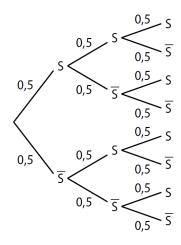
- **101 1.** Oui car il y a équiprobabilité des sexes à chaque naissance : le sexe du premier enfant n'influe pas sur celui de deuxième, et celui des deux premiers n'influe pas sur celui du troisième.
- **2.** Soit S l'événement « l'enfant est de sexe féminin ». L'univers d'une épreuve de Bernoulli est $\{S; \overline{S}\}$. L'univers de l'expérience aléatoire est donc le produit cartésien : $\{S; \overline{S}\} \times \{S; \overline{S}\} \times \{S; \overline{S}\}$.
- **3.** L'arbre a trois étages, et de chaque nœud partent deux branches : une pour la réalisation de S et l'autre pour celle de \overline{S} , chacune avec une probabilité valant 0,5 car il y a équiprobabilité.



4. Avec l'arbre, on établit la liste des issues possibles :

(S,S,S) (S,S,\overline{S}) , (S,\overline{S},S) , (\overline{S},S,S) , $(S,\overline{S},\overline{S})$, $(\overline{S},\overline{S},S)$, $(\overline{S},S,\overline{S})$ et $(\overline{S},\overline{S},\overline{S})$.

 $P(SSS) = 0.5 \times 0.5 \times 0.5 = \frac{1}{8}$. De la même façon $P(\overline{SSS}) = \frac{1}{8}$.

 $P(SS\overline{S}) = \frac{3}{8}$ car il y a trois issues réalisant cet événement : (S, S, \overline{S}) , (S, \overline{S}, S) et (\overline{S}, S, S) .

 $P(S\overline{SS}) = \frac{3}{8}$ car il y a trois issues réalisant cet événement : $(S, \overline{S}, \overline{S})$, $(\overline{S}, \overline{S}, S)$ et $(\overline{S}, S, \overline{S})$.