106 Soit X la variable aléatoire qui à une série de 4 ordinateurs, associe le nombre d'ordinateurs en fonctionnement cinq ans plus tard. Les pannes étant supposées indépendantes, X suit la loi binomiale de paramètres n = 4 et p = 0,2.

1. On cherche P(X = 4).

On a
$$P(X = 4) = {4 \choose 4} \times 0.2^4 \times 0.8^0 = 0.2^4 = 0.0016 \approx 0.002 \text{ à } 10^{-3} \text{ près} : réponse c.$$

- **2.** Si trois ordinateurs ne fonctionnent pas, c'est qu'un seul fonctionne ; on cherche P(X=1). On a $P(X=1) = \binom{4}{1} \times 0.2^1 \times 0.8^3 = 0.8^4 \approx 0.410$ à 10^{-3} près : réponse **d.**
- **3.** On cherche $P(X \ge 2)$.

L'événement contraire de $\{X \ge 2\}$ est l'événement $\{X \le 1\}$ donc $P(X \ge 2) = 1 - P(X \le 1)$.

L'événement $\{X \le 1\}$ est la réunion des événements $\{X = 0\}$ et $\{X = 1\}$ donc $(X \le 1) = P(X = 0) + P(X = 1) = 0.8^4 + 0.8^4 = 0.8192$.

On obtient $P(X \ge 2) \approx 1 - 0.819$ soit environ 0,181 : réponse c.