SUJET B

1. Le rayon lumineux de vecteur directeur \vec{u} (a;b;c) est réfléchi par le plan $(O;\vec{\iota},\vec{\jmath})$. Un vecteur directeur du rayon réfléchi est donc $\overrightarrow{u_1}(a;b;-c)$ qui a une troisième coordonnée opposée à celle de \vec{u} .

Le rayon lumineux de vecteur directeur $\overrightarrow{u_1}(a;b;-c)$ est réfléchi par le plan (O; \overrightarrow{j} , \overrightarrow{k}). Un vecteur directeur du rayon réfléchi est donc $\overrightarrow{u_2}(-a\;;\;b\;;\;-c)$ qui a une première coordonnée opposée à celle de $\overrightarrow{u_1}$.

Le rayon lumineux de vecteur directeur $\overrightarrow{u_2}(-a~;~b~;-c)$ est réfléchi par le plan (O ; $\overrightarrow{j},\overrightarrow{k}$). Un vecteur directeur du rayon réfléchi est donc $\overrightarrow{u_3}(-a;-b;-c)$ qui a une deuxième coordonnée opposée à celle de $\overrightarrow{u_2}$.

Puisque $\overrightarrow{u_3} = -\overrightarrow{u}$, le rayon final est parallèle au rayon initial.

2. a. La droite d_2 passe par le point $I_1(2;3;0)$ et elle a pour vecteur directeur $\overrightarrow{v_2}$ (-2;-1;1).

Une représentation paramétrique de d_2 est donc $\begin{cases} x = 2 - 2t \\ y = 3 - t \text{ avec } t \in \mathbb{R}. \end{cases}$

- **b.** soit M un point du plan $(O; \vec{l}, \vec{k})$. Il existe deux réels y et z tels que $\overrightarrow{OM} = y \vec{l} + z \vec{k}$ donc $\overrightarrow{OM} = 0 \ \vec{i} + y \ \vec{j} + z \ \vec{k}$. Puisque, l'abscisse de M dans le repère $(O; \vec{i}, \vec{j}, \vec{k})$ est nulle, l'abscisse d'un point quelconque du plan $(O; \vec{l}, \vec{k})$ est nulle.
- **c.** On a $I_2(0; 2; 1)$.

Tout d'abord, l'abscisse de I_2 est nulle donc I_2 est un point du plan $(O; \vec{j}, \vec{k})$.

De plus, la droite d_2 passe par le point $I_1(2;3;0)$ d'abscisse non nulle donc la droite d_2 n'est pas incluse dans le plan (O; \vec{j} , \vec{k}). Vérifions si I₂ est un point de d_2 .

Pour cela, on résout le système :

$$\begin{cases} x_{\mathrm{I}_2} = 2 - 2t \\ y_{\mathrm{I}_2} = 3 - t \end{cases}$$
. Ce système équivaut à
$$\begin{cases} 0 = 2 - 2t \\ 2 = 3 - t \end{cases}$$
 c'est-à-dire à
$$\begin{cases} t = 1 \\ t = 1 \end{cases}$$
, ce qui convient.
$$t = 1$$

 I_2 est le point de d_2 ayant pour paramètre t = 1.

On en déduit que d_2 et $(O; \vec{l}, \vec{k})$ sont bien sécants en I_2 .

3. La droite d_3 passe par le point $I_2(0; 2; 1)$ et elle a pour vecteur directeur $\overrightarrow{v_3}$ (2; -1; 1).

Une représentation paramétrique de d_3 est donc $\begin{cases} x = 2t \\ y = 2 - t \text{ avec } t \in \mathbb{R}. \end{cases}$

 $(O; \vec{t}, \vec{k})$ est le plan constitué des points de l'espace d'ordonnée nulle.

Le point I_3 d'ordonnée 0 appartient à la droite d_3 donc on résout le système $\begin{cases} x_{I_3} = t \\ y_{I_3} = 2 - t \\ z_{I_3} = 1 + t \end{cases}$ Ce système équivaut à $\begin{cases} x_{I_3} = 2t \\ 0 = 2 - t \\ z_{I_3} = 1 + t \end{cases}$ $\begin{cases} x_{I_3} = 2 \times 2 \\ t = 2 \\ z_{I_3} = 1 + 2 \end{cases}$ $\begin{cases} x_{I_3} = 4 \\ t = 2 \\ z_{I_3} = 3 \end{cases}$ $\begin{cases} x_{I_3} = 4 \\ t = 2 \\ z_{I_3} = 3 \end{cases}$ $\begin{cases} x_{I_3} = 4 \\ t = 2 \\ z_{I_3} = 3 \end{cases}$

 I_3 est le point de d_3 ayant pour paramètre t=2.

Ses coordonnées sont (4; 0; 3).

4. a. On a
$$\overrightarrow{v_1}$$
 (-2; -1; -1), $\overrightarrow{v_2}$ (-2; -1; 1), $\overrightarrow{v_3}$ (2; -1; 1).

Tout d'abord, $\overrightarrow{v_2}$ et $\overrightarrow{v_3}$ ont leur première coordonnée opposées mais leur deuxième coordonnée sont égales donc $\overrightarrow{v_2}$ et $\overrightarrow{v_3}$ ne sont pas colinéaires.

On recherche s'il existe deux réels α et β tels que $\overrightarrow{v_3} = \alpha \overrightarrow{v_1} + \beta \overrightarrow{v_2}$.

Cela se traduit par le système :

$$\begin{cases}
-2\alpha - 2\beta = 2 \\
-\alpha - \beta = -1. \\
-\alpha + \beta = 1
\end{cases}$$

On extrait les deux premières équations et on résout le système obtenu :

$$\begin{cases} -2\alpha - 2\beta = 2 \\ -\alpha - \beta = -1 \end{cases}$$
. Ce système équivaut à
$$\begin{cases} -2\alpha - 2\beta = 2 \\ -2\alpha - 2\beta = -2 \end{cases}$$

Il n'est pas possible que $-2 \alpha - 2 \beta$ soit égal en même temps à 2 et à -2 donc ce système n'a pas de solution.

Ainsi $\overrightarrow{v_3}$ n'est pas une combinaison linéaire des vecteurs $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$ donc ces trois vecteurs ne sont pas coplanaires. On en déduit que les droites d_1 , d_2 et d_3 ne sont pas coplanaires.

b. d_1 et d_2 sont sécantes en I_1 donc d_1 et d_2 sont coplanaires.

On nomme \mathcal{P} le plan déterminé par d_1 et d_2 .

De plus, d_2 et d_3 sont sécantes en I_2 .

Puisque d_1 , d_2 et d_3 ne sont pas coplanaires, la droite d_3 coupe le plan \mathcal{P} en I_2 .

Comme I_3 est un point de d_3 distinct de I_2 , il n'appartient pas à ce plan.

Or I₃ est un point de d_4 . Puisqu'il existe un point de d_4 n'appartenant pas au plan \mathcal{P} , cela signifie que les droites d_1 , d_2 et d_4 ne sont pas coplanaires.