SUJET E

- **1.** ABCDEFGH est un cube donc les vecteurs \overrightarrow{AB} , \overrightarrow{AD} et \overrightarrow{AE} ne sont pas coplanaires. On en déduit que $(\overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$ est une base de l'espace.
- **2. a.** $\overrightarrow{CE} = \overrightarrow{CB} + \overrightarrow{BA} + \overrightarrow{AE}$ Relation de Chasles. $= \overrightarrow{DA} - \overrightarrow{AB} + \overrightarrow{AE}$ Relation de Chasles. $\overrightarrow{CB} = \overrightarrow{DA} \text{ car ABCD est un carr\'e}.$ $= -\overrightarrow{AB} - \overrightarrow{AD} + \overrightarrow{AE}.$
- **b.** $\overrightarrow{AL} = \overrightarrow{AC} + \overrightarrow{CL}$ Relation de Chasles. $= \overrightarrow{AB} + \overrightarrow{AD} + \frac{2}{3}\overrightarrow{CE}$ $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$ car ABCD est un carré. $= \overrightarrow{AB} + \overrightarrow{AD} + \frac{2}{3}(-\overrightarrow{AB} - \overrightarrow{AD} + \overrightarrow{AE})$ $= \frac{3}{3}\overrightarrow{AB} + \frac{3}{3}\overrightarrow{AD} - \frac{2}{3}\overrightarrow{AB} - \frac{2}{3}\overrightarrow{AD} + \frac{2}{3}\overrightarrow{AE}$ $= \frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AD} + \frac{2}{3}\overrightarrow{AE}.$
- **3.** On a $\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AE}$ car ABFE est un carré. De manière analogue, $\overrightarrow{AH} = \overrightarrow{AD} + \overrightarrow{AE}$. Ainsi $\overrightarrow{AF} + \overrightarrow{AH} = \overrightarrow{AB} + \overrightarrow{AD} + 2 \overrightarrow{AE}$, ce qui permet de constater que $\overrightarrow{AF} + \overrightarrow{AH} = 3 \overrightarrow{AL}$. On en déduit que $\overrightarrow{AL} = \frac{1}{3} \overrightarrow{AF} + \frac{1}{3} \overrightarrow{AH}$. Puisque \overrightarrow{AL} est une combinaison linéaire des vecteurs \overrightarrow{AF} et \overrightarrow{AH} , cela signifie que ces vecteurs sont coplanaires.
- **4.** K est le milieu du segment [FH] donc $\overrightarrow{FK} = \frac{1}{2}\overrightarrow{FH} = \frac{1}{2}(\overrightarrow{FA} + \overrightarrow{AH}) = -\frac{1}{2}\overrightarrow{AF} + \frac{1}{2}\overrightarrow{AH}$.

Dès lors:

$$\overrightarrow{AK} = \overrightarrow{AF} + \overrightarrow{FK}$$
 Relation de Chasles.

$$= \overrightarrow{AF} - \frac{1}{2}\overrightarrow{AF} + \frac{1}{2}\overrightarrow{AH}$$

$$= \frac{1}{2}\overrightarrow{AF} + \frac{1}{2}\overrightarrow{AH}$$

$$= \frac{1}{2}(\overrightarrow{AF} + \overrightarrow{AH})$$

$$= \frac{1}{2} \times 3 \overrightarrow{AL}.$$
 Car $\overrightarrow{AF} + \overrightarrow{AH} = 3 \overrightarrow{AL}$.

Puisque $\overrightarrow{AK} = \frac{3}{2} \overrightarrow{AL}$, alors les vecteurs \overrightarrow{AK} et \overrightarrow{AL} sont colinéaires et les points A, K et L sont alignés.