- **139 1.** I est le milieu de [BC] donc ses coordonnées sont $\left(\frac{x_B + x_C}{2}; \frac{y_B + y_C}{2}; \frac{z_B + z_C}{2}\right)$ soit $\left(\frac{0+4}{2}; \frac{-1+1}{2}; \frac{3+(-1)}{2}\right)$. On en déduit que les coordonnées de I sont (2; 0; 1).
- **2.** D est le symétrique de I par rapport au point A donc A est le milieu du segment [DI]. On en déduit que les vecteurs \overrightarrow{IA} et \overrightarrow{AD} sont égaux.

Or
$$\overrightarrow{IA}$$
 (0; -2; 0) et \overrightarrow{AD} ($x_D - x_A$; $y_D - y_A$; $z_D - z_A$) soit \overrightarrow{AD} ($x_D - 2$; $y_D + 2$; $z_D - 1$).

Le système
$$\begin{cases} x_{D} - 2 &= 0 \\ y_{D} + 2 &= -2 \text{ équivaut à } \\ z_{D} - 1 &= 0 \end{cases} \begin{cases} x_{D} &= 2 \\ y_{D} &= -4. \\ z_{D} &= 1 \end{cases}$$

Ainsi, les coordonnées du point D sont (2; -4; 1).

3. On a \overrightarrow{BE} ($x_E - x_B$; $y_E - y_B$; $z_E - z_B$) soit \overrightarrow{BE} (x_E ; $y_E + 1$; $z_E - 3$).

On a aussi \overrightarrow{BC} (4; 2; -4) et \overrightarrow{AC} (2; 3; -2).

Puisque $\overrightarrow{BE} = \overrightarrow{BC} - 3 \overrightarrow{AC}$, on résout le système :

Le système
$$\begin{cases} x_{\rm E} &= 4 - \mathbf{3} \times 2 \\ y_{\rm E} + 1 &= 2 - \mathbf{3} \times 3 \\ z_{\rm E} - 3 &= -4 - \mathbf{3} \times (-2) \end{cases}$$
 équivaut à
$$\begin{cases} x_{\rm E} &= -2 \\ y_{\rm E} &= -7 - 1. \\ z_{\rm E} &= 2 + 3 \end{cases}$$

Ainsi, les coordonnées du point E sont (-2; -8; 5).

4. On a \overrightarrow{BF} ($x_F - x_B$; $y_F - y_B$; $z_F - z_B$) soit \overrightarrow{BF} (x_F ; $y_F + 1$; $z_F - 3$).

De plus, $\overrightarrow{CF}(x_F - x_C; y_F - y_C; z_F - z_C)$ soit $\overrightarrow{CF}(x_F - 4; y_F - 1; z_F + 1)$.

Puisque $\overrightarrow{3} \overrightarrow{BF} = \overrightarrow{5} \overrightarrow{CF}$, on résout le système :

Le système
$$\begin{cases} 3 x_F &= 5(x_F - 4) \\ 3(y_F + 1) &= 5(y_F - 1) \text{ équivaut à } \\ 3(z_F - 3) &= 5(y_F + 1) \end{cases} \begin{cases} 3 x_F - 5 x_F &= -20 \\ 3 y_F - 5 y_F &= -5 - 3 \\ 3 z_F - 5 z_F &= 5 + 9 \end{cases}$$

soit à
$$\begin{cases} -2 x_{F} = -20 \\ -2 y_{F} = -8 \\ -2 z_{F} = 14 \end{cases}$$

Ainsi, les coordonnées du point F sont (10; 4; -7).

5. On a \overrightarrow{EF} (12; 12; -12) et \overrightarrow{ED} (4; 4; -4).

On constate que $\overrightarrow{EF} = 3$ \overrightarrow{ED} donc les vecteurs \overrightarrow{EF} et \overrightarrow{ED} sont colinéaires.

On peut en déduire que les points E, F et D sont alignés.