Sujet A

1. a. On a
$$\overrightarrow{OA}(10; 0; 1)$$
 et $\overrightarrow{OB}(1; 7; 1)$.

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = 10 \times 1 + 0 \times 7 + 1 \times 1 = 10 + 0 + 1 = 11.$$

Comme le produit scalaire \overrightarrow{OA} . \overrightarrow{OB} n'est pas nul, les vecteurs \overrightarrow{OA} et \overrightarrow{OB} ne sont pas orthogonaux donc les droites (OA) et (OB) ne sont pas perpendiculaires.

b. Comme
$$\overrightarrow{OA} \cdot \overrightarrow{OB} = OA \times OB \times \cos{(\widehat{AOB})}$$
, on a $\cos{(\widehat{AOB})} = \frac{\overrightarrow{OA} \cdot \overrightarrow{OB}}{OA \times OB}$

D'autre part : OA =
$$\|\overrightarrow{OA}\| = \sqrt{10^2 + 0^2 + 1^2} = \sqrt{101}$$

et OB =
$$\|\overrightarrow{OB}\| = \sqrt{1^2 + 7^2 + 1^2} = \sqrt{51}$$
.

On en déduit que
$$\cos(\widehat{AOB}) = \frac{11}{\sqrt{101} \times \sqrt{51}}$$

À l'aide de la calculatrice, on obtient $\widehat{AOB} \approx 81,2^{\circ}$ arrondie au dixième.

2.
$$7x_0 + 9y_0 - 70z_0 = 7 \times 0 + 9 \times 0 - 70 \times 0 = 0$$

donc O appartient au plan d'équation
$$7x + 9y - 70z = 0$$
.

$$7x_A + 9y_A - 70z_A = 7 \times 10 + 9 \times 0 - 70 \times 1 = 0$$

donc A appartient au plan d'équation 7x + 9y - 70z = 0.

$$7x_B + 9y_B - 70z_B = 7 \times 1 + 9 \times 7 - 70 \times 1 = 0$$

donc B appartient au plan d'équation 7x + 9y - 70z = 0.

On en déduit que le plan (OAB) est le plan d'équation 7x + 9y - 70z = 0.

3. On a
$$\overrightarrow{CA}(10 - 0; 0 - 0; 1 - 5)$$
 soit $\overrightarrow{CA}(10; 0; -4)$.

La droite (CA) est la droite passant par C(0; 0; 5) et de vecteur directeur \overrightarrow{CA} donc la droite (CA) a pour représentation paramétrique

$$\begin{cases} x = 10t \\ y = 0 \text{ avec } t \text{ réel quelconque.} \end{cases}$$

4. Le point D a pour coordonnées
$$\left(\frac{x_0+x_C}{2}; \frac{y_0+y_C}{2}; \frac{z_0+z_C}{2}\right)$$

soit
$$\left(\frac{0+0}{2}; \frac{0+0}{2}; \frac{0+5}{2}\right)$$
 donc $(0; 0; \frac{5}{2})$.

Comme \mathcal{P} est parallèle au plan (OAB) qui a pour équation 7x + 9y - 70z = 0,

le plan \mathcal{P} a une équation de la forme : 7x + 9y - 70z + d = 0.

D appartient à
$$\mathcal{P}$$
 donc $7x_D + 9y_D - 70z_D + d = 0$

soit
$$7 \times 0 + 9 \times 0 - 70 \times \frac{5}{2} + d = 0$$
 et $-175 + d = 0$, ce qui donne $d = 175$.

Le plan \mathcal{P} a donc pour équation 7x + 9y - 70z + 175 = 0.

5. Soit M(x; y; z) un point de l'espace.

Le point M appartient à l'intersection de \mathcal{P} et (CA) si et seulement si M appartient à \mathcal{P} et M appartient à (CA), ce qui équivaut au système :

$$\begin{cases} 7x + 9y - 70z + 175 = 0 \\ x = 10t \\ y = 0 \end{cases} \text{ avec } t \in \mathbb{R}.$$

En substituant les expressions de x, y et z dans la première équation, on obtient :

$$7 \times 10t + 9 \times 0 - 70 \times (5 - 4t) + 175 = 0$$

soit
$$70t - 350 + 280t + 175 = 0$$

donc 350t-175=0 et 350t=175 puis $t=\frac{175}{350}$ donc $t=\frac{1}{2}$. On en déduit : $x=10\times\frac{1}{2}=5$; y=0 et $z=5-4\times\frac{1}{2}=5-2=3$. Le point F intersection du plan \mathcal{P} et de la droite (CA) a pour coordonnées (5 ; 0 ; 3).

6. On a
$$\overrightarrow{EF}(5-\frac{1}{2};0-\frac{7}{2};3-3)$$
 soit $\overrightarrow{EF}(\frac{9}{2};-\frac{7}{2};0)$ et $\overrightarrow{AB}(1-10;7-0;1-1)$ soit $\overrightarrow{AB}(-9;7;0)$.

On remarque que $\overrightarrow{AB} = -2\overrightarrow{EF}$, donc les vecteurs \overrightarrow{AB} et \overrightarrow{EF} sont colinéaires, ce qui prouve que les droites (AB) et (EF) sont parallèles.