157 1. On a : $\overrightarrow{AB}(0-1;1-1;2-0)$ soit $\overrightarrow{AB}(-1;0;2)$ et $\overrightarrow{AC}(3-1;3-1;1-0)$ soit $\overrightarrow{AC}(2;2;1)$. On a $2=-2\times(-1)$ mais $2\neq -2\times 0$.

On en déduit que les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires donc A, B et C ne sont pas alignés : ces points définissent un plan.

2. a. On va démontrer que chacun des points A, B et C appartient au plan \mathcal{P} .

$$4x_A - 5y_A + 2z_A + 1 = 4 \times 1 - 5 \times 1 + 2 \times 0 + 1 = 4 - 5 + 0 + 1 = 0$$
 donc A appartient à \mathcal{P} .

 $4x_B - 5y_B + 2z_B + 1 = 4 \times 0 - 5 \times 1 + 2 \times 2 + 1 = 0 - 5 + 4 + 1 = 0$ donc B appartient à \mathcal{P} .

$$4x_{\text{C}} - 5y_{\text{C}} + 2z_{\text{C}} + 1 = 4 \times 3 - 5 \times 3 + 2 \times 1 + 1 = 12 - 15 + 2 + 1 = 0$$
 donc C appartient à \mathcal{P} .

On en déduit que le plan \mathcal{P} est le plan (ABC).

b. Comme (ABC) a pour équation 4x - 5y + 2z + 1 = 0, le vecteur $\vec{n}(4; -5; 2)$ est un vecteur normal au plan (ABC).