101 1. À l'aide de la calculatrice, pour des grandes valeurs de n, on conjecture une limite égale à 2.

2. Soit un réel a strictement positif.

On cherche à déterminer s'il existe un entier n_0 non nul tel que, pour tout entier naturel n supérieur ou égal à n_0 , on ait $v_n \in]2-a$; 2+a[.

Supposons
$$v_n \in \left[2-a; 2+a\right]$$
 alors $2-a < v_n < 2+a$.

Donc
$$2 - a < 2 - \frac{1}{\sqrt{n}} < 2 + a$$
.

On obtient en retranchant 2 à tous les membres de la double inégalité précédente :

$$-a < -\frac{1}{\sqrt{n}} < a.$$

Puis en multipliant par -1:

$$a > \frac{1}{\sqrt{n}} > -a$$
.

$$-a < -\frac{1}{\sqrt{n}} < a$$
 équivaut à $a > \frac{1}{\sqrt{n}} > -a$ et donc à $a > \frac{1}{\sqrt{n}}$ et $\frac{1}{\sqrt{n}} > -a$.

Or
$$\frac{1}{\sqrt{n}} > -a$$
 est toujours vrai et $a > \frac{1}{\sqrt{n}}$ équivaut en élevant au carré à : $a^2 > \frac{1}{n} > 0$.

Par décroissance de la fonction inverse sur l'ensemble des réels strictement positifs, on a alors : $n > \frac{1}{a^2}$.

Il suffit alors de choisir n_0 comme le premier entier immédiatement supérieur à $\frac{1}{a^2}$.

Pour tout réel a strictement positif $v_n \in [2-a; 2+a[$ dès que $n \ge n_0$. La suite (v_n) converge donc vers 2.