Sujet E

1. a.
$$\lim_{t\to +\infty} \left(-\frac{t}{5}\right) = -\infty$$
 et $\lim_{X\to -\infty} e^X = 0$

donc par composition $\lim_{t \to +\infty} e^{-\frac{t}{5}} = 0$.

Par conséquent, $\lim_{t\to+\infty} f(t) = 20$.

b. Pour tout réel t positif, $f'(t) = 980 \times \left(-\frac{1}{5}\right) e^{-\frac{t}{5}}$, soit $f'(t) = -196e^{-\frac{t}{5}}$. Pour tout réel t positif, $e^{-\frac{t}{5}} > 0$ donc f'(t) < 0 donc f est décroissante sur $[0; +\infty[$.

t	0 +∞
f '(t)	-
f(t)	1 00020

2. a. Pour tout nombre réel *t* positif :

$$d(t) = 980e^{-\frac{t}{5}} + 20 - (980e^{-\frac{t+1}{5}} + 20)$$

$$d(t) = 980e^{-\frac{t}{5}} - 980e^{-\frac{t}{5}} - \frac{1}{5}$$

$$d(t) = 980e^{-\frac{t}{5}} - 980e^{-\frac{t}{5}} \times e^{-\frac{1}{5}}$$

$$d(t) = 980e^{-\frac{t}{5}} (1 - e^{-\frac{1}{5}})$$

b.
$$\lim_{t \to +\infty} e^{-\frac{t}{5}} = 0$$
 (voir **1. a**) donc $\lim_{t \to +\infty} (980e^{-\frac{t}{5}}) = 0$.

Et
$$\lim_{t \to +\infty} (1 - e^{-\frac{1}{5}}) = 1 - e^{-\frac{1}{5}}$$
.

Donc par règle sur la limite d'un produit, $\lim_{t\to +\infty} d(t) = 0$.

c. On peut en déduire que la température finira par se stabiliser puisque l'abaissement de température du four au cours d'une heure tend vers 0. Et comme $\lim_{t\to +\infty} f(t) = 20$, elle se stabilisera avec le temps à 20 °C.