162 1. a.
$$\lim_{x \to -1} 2 = 2$$
 et $\lim_{x \to -1} (x + 1) = 0^+$ donc par quotient $\lim_{x \to -1} \frac{2}{x + 1} = +\infty$.

$$\lim_{x \to -1} e^{0.5x} = e^{-0.5} \text{ et } \lim_{\substack{x \to -1 \\ x > -1}} \left(-\frac{2}{x+1} \right) = -\infty \text{ donc par somme } \lim_{\substack{x \to -1 \\ x > -1}} f(x) = -\infty.$$

On en déduit que la droite d'équation x = -1 est une asymptote à \mathcal{C}_f .

b.
$$\lim_{x \to +\infty} (0.5x) = +\infty$$
 et $\lim_{X \to +\infty} e^X = +\infty$ donc par composition $\lim_{x \to +\infty} e^{0.5x} = +\infty$.

$$\lim_{x \to +\infty} 2 = 2 \text{ et } \lim_{x \to +\infty} (x+1) = +\infty \text{ donc par quotient } \lim_{x \to +\infty} \frac{2}{x+1} = 0.$$

Par conséquent, $\lim_{x \to +\infty} f(x) = +\infty$.

2. a. Pour tout réel x de]-1; $+\infty[$,

$$f(x) = e^{u(x)} - 2 \times \frac{1}{v(x)}$$
 avec $u(x) = 0.5x$ et $u'(x) = 0.5$

$$v(x) = x + 1$$
 et $v'(x) = 1$

Donc
$$f'(x) = u'(x)e^{u(x)} - 2 \times \frac{-v'(x)}{(v(x))^2} = 0.5e^{0.5x} + \frac{2}{(x+1)^2}$$
.

b. Pour tout réel x de]-1;
$$+\infty$$
[, f'(x) > 0 donc f est croissante sur]-1; $+\infty$ [.

3. Une équation de la tangente T à \mathcal{C}_f au point d'abscisse 0 est :

$$y = f'(0)(x - 0) + f(0).$$

$$Or f(0) = -1 \text{ et } f'(0) = 2.5.$$

Une équation de T est : y = 2.5x - 1.