Chapitre 5

Fonctions: limite et dérivation

Revoir des points essentiels

165 1.
$$\lim_{\substack{x \to 3 \\ x > 3}} 2 = 2$$
 et $\lim_{\substack{x \to 3 \\ x > 3}} (3 - x) = 0^-$ car si $x > 3$, alors $3 - x < 0$.

Donc par quotient, $\lim_{\substack{x \to 3 \ x > 3}} \frac{2}{3-x} = -\infty$.

2.
$$\lim_{\substack{x \to 2 \\ x < 2}} (x - 1) = 1$$
 et $\lim_{\substack{x \to 2 \\ x < 2}} (2 - x) = 0^+$ car si $x < 2$, alors $2 - x > 0$.

Donc par quotient, $\lim_{\substack{x \to 2 \\ x < 2}} \frac{x-1}{2-x} = +\infty$.

3.
$$\lim_{x \to +\infty} (2 + e^x) = +\infty$$
 donc $\lim_{x \to +\infty} \frac{1}{2 + e^x} = 0$.

4.
$$\lim_{x \to -\infty} e^x = 0$$
 donc $\lim_{x \to -\infty} (2 + e^x) = 2$ et par conséquent, $\lim_{x \to -\infty} \frac{1}{2 + e^x} = \frac{1}{2}$.

5.
$$\lim_{x \to +\infty} (2 - x^2) = -\infty$$
 et $\lim_{x \to +\infty} (\sqrt{x} - 5) = +\infty$

donc par produit $\lim_{x\to +\infty} (2-x^2)(\sqrt{x}-5) = -\infty$.

6.
$$\lim_{x \to +\infty} (3x^3) = +\infty$$
 et $\lim_{x \to +\infty} \frac{2}{x} = 0$ donc par somme $\lim_{x \to +\infty} (3x^3 + \frac{2}{x}) = +\infty$.

7.
$$\lim_{x \to -\infty} (x^3) = -\infty$$
 et $\lim_{x \to -\infty} (-4x^2 + 9) = -\infty$ donc par somme $\lim_{x \to -\infty} (x^3 - 4x^2 + 9) = -\infty$.

8.
$$\lim_{x \to -\infty} x = -\infty$$
 et $\lim_{x \to -\infty} (e^x + 1) = 1$ donc par somme $\lim_{x \to -\infty} (x + e^x + 1) = -\infty$.

9.
$$\lim_{x \to -\infty} e^x = 0$$
 et $\lim_{x \to -\infty} (e^x - 1) = -1$ donc par produit $\lim_{x \to -\infty} e^x (e^x - 1) = 0$.

10.
$$\lim_{\substack{x \to 4 \\ x < 4}} e^x = e^4 \text{ et } \lim_{\substack{x \to 4 \\ x < 4}} (x - 4) = 0^- \text{ car si } x < 4, x - 4 < 0.$$

Donc par quotient, $\lim_{\substack{x \to 4 \\ x < 4}} \frac{e^x}{x - 4} = -\infty$.

$$f = e^u$$
 avec $u(x) = -x^2 + 1$ et $u'(x) = -2x$
donc $f'(x) = u'(x)e^{u(x)} = -2xe^{-x^2 + 1}$.

2. Pour tout réel x,

$$f = 2e^u$$
 avec $u(x) = 3x + 1$ et $u'(x) = 3$
donc $f'(x) = 2u'(x)e^{u(x)} = 2 \times 3e^{3x+1} = 6e^{3x+1}$.

3. Pour tout réel x,

$$f = 0.5e^u$$
 avec $u(x) = 2 - x^2$ et $u'(x) = -2x$
donc $f'(x) = 0.5u'(x)e^{u(x)} = 0.5 \times (-2x) e^{2-x^2} = -x e^{2-x^2}$.

4. Pour tout réel x.

$$f = u^3$$
 avec $u(x) = 4x^2 - 1$ et $u'(x) = 8x$
 $f' = 3u'u^{3-1} = 3u'u^2$
donc $f'(x) = 3 \times 8x (4x^2 - 1)^2 = 24x (4x^2 - 1)^2$.

5. Pour tout réel x,

$$f = u^4$$
 avec $u(x) = 3x^2 - 1$ et $u'(x) = 6x$
 $f' = 4u'u^{4-1} = 4u'u^3$
donc $f'(x) = 4 \times 6x (3x^2 - 1)^3 = 24x(3x^2 - 1)^3$.

6. Pour tout réel x,

$$f = u^5$$
 avec $u(x) = e^x - 1$ et $u'(x) = e^x$
 $f' = 5u'u^{5-1} = 5u'u^4$
donc $f'(x) = 5u'(x)(u(x))^4 = 5e^x(e^x - 1)^4$

7. Pour tout réel x,

$$f = \frac{1}{u^2} = u^{-2}$$
 avec $u(x) = x^2 + 5$ et $u'(x) = 2x$

f est dérivable sur \mathbb{R} car u est dérivable sur \mathbb{R} et ne s'annule pas \mathbb{R} .

$$(u^{-2})' = -2u'u^{-2-1} = -2u'u^{-3} = -\frac{2u'}{u^3}$$

donc pour tout réel
$$x, f'(x) = -\frac{2 \times 2x}{(x^2+5)^3} = -\frac{4x}{(x^2+5)^3}$$

8. Pour tout réel x,

$$f = 5\frac{1}{u^3} = 5u^{-3}$$
 avec $u(x) = x^2 + 5$ et $u'(x) = 2x$

f est dérivable sur $\mathbb R$ car u est dérivable sur $\mathbb R$ et ne s'annule pas $\mathbb R$.

$$(u^{-3})' = -3u'u^{-3-1} = -3u'u^{-4} = -\frac{3u'}{u^4}$$

donc
$$f' = 5 \times \left(-\frac{3u'}{u^4}\right) = -\frac{15u'}{u^4}$$

donc pour tout réel x,
$$f'(x) = -\frac{15 \times 2x}{(x^2+5)^4} = -\frac{30x}{(x^2+5)^4}$$

9. Pour tout réel x,

$$f = \sqrt{u}$$
 avec $u(x) = 5x^2 + 1$ et $u'(x) = 10x$.

f est dérivable sur \mathbb{R} car u est dérivable sur \mathbb{R} et est strictement positive sur \mathbb{R} .

Indice Terminale Enseignement de spécialité – Revoir des points essentiels

Pour tout réel
$$x, f'(x) = \frac{u'(x)}{2\sqrt{u(x)}} = \frac{10x}{2\sqrt{5x^2+1}} = \frac{5x}{\sqrt{5x^2+1}}$$
.

10. Pour tout réel x,

$$f = \sqrt{u}$$
 avec $u(x) = x^2 - x + 8$ et $u'(x) = 2x - 1$.

f est dérivable sur $\mathbb R$ car u est dérivable sur $\mathbb R$ et est strictement positive sur $\mathbb R$.

Pour tout réel
$$x, f'(x) = \frac{u'(x)}{2\sqrt{u(x)}} = \frac{2x-1}{2\sqrt{x^2-x+8}}$$
.