Chapitre 6 Continuité et convexité

Revoir des points essentiels

108 1. Pour tout réel $x : g(x) = x^5 + 4x + 2$ puis $g'(x) = 5x^4 + 4$.

g'(x) > 0 pour tout réel x; g croît strictement sur [-1; 0].

g est continue sur [-1; 0].

g(-1) = -3 et g(0) = 2 donc 0 est compris entre g(-1) et g(0).

D'après le corollaire du théorème des valeurs intermédiaires, l'équation g(x) = 0 admet une unique solution α .

- 2. À l'aide de la calculatrice, on trouve $g(-0.50) \approx -0.03$: g(-0.50) < 0 et $g(-0.49) \approx 0.01$: g(-0.49) > 0 d'où $-0.50 \le \alpha \le -0.49$.
- **109** 1. Pour tout réel $x : f(x) = e^{-x} x + 8$ puis $f'(x) = -e^{-x} 1$.

Pour tout réel $x : e^{-x} > 0$ puis $-e^{-x} < 0$ et $-e^{-x} - 1 < 0$ donc f'(x) < 0; f décroît strictement sur \mathbb{R} , et donc sur [0; 3]. De plus f est continue sur [0; 3].

f(0) = 9; $f(3) \approx 5.05$: 6 est compris entre f(0) et f(3).

D'après le corollaire du théorème des valeurs intermédiaires, l'équation f(x) = 6 possède une seule solution α .

- 2. À l'aide de la calculatrice, on trouve $f(2,12) \approx 6.13$: f(2,12) > 6 et $f(2,13) \approx 5.99$: f(2,13) < 6 d'où $2.12 \le \alpha \le 2.13$ donc une valeur approchée de α à 0.01 près est par exemple 2.12.
- **110** Pour tout réel $x : f(x) = 12x^3 12x^2 + 9$ puis $f'(x) = 36x^2 24x$ puis f''(x) = 72x 24.

 $72x - 24 \ge 0$ équivaut à $72x \ge 24$ ce qui équivaut à $x \ge \frac{24}{72}$ c'est-à-dire $x \ge \frac{1}{3}$.

Sur $]-\infty$; $\frac{1}{3}$], $f''(x) \le 0$ donc f est concave puis sur $[\frac{1}{3}, +\infty[, f''(x) \ge 0]$ donc f est convexe.

Le point d'abscisse $x = \frac{1}{3}$ est le seul point d'inflexion.

111 Pour tout réel $x : f(x) = (1 - x) e^{3x}$.

f = uv avec pour tout réel x:

$$u(x) = 1 - x$$

$$u'(x) = -1$$

$$v(x) = e^{3x}$$

$$v'(x) = 3e^{3x}$$
.

f' = u'v + uv' donc pour tout réel x:

Indice Terminale Enseignement de spécialité – Revoir des points essentiels

$$f'(x) = -1e^{3x} + (1-x)3e^{3x} = e^{3x}(-1+3(1-x)) = e^{3x}(-1+3-3x)$$
 soit $f'(x) = e^{3x}(2-3x)$.
 $f' = uv$ avec pour tout réel x :

$$u(x) = 2 - 3x$$

$$u'(x) = -3$$

$$v(x) = e^{3x}$$

$$v'(x) = 3e^{3x}$$
.

f'' = u'v + uv' donc pour tout réel x:

$$f''(x) = -3e^{3x} + (2-3x)3e^{3x} = 3e^{3x}(-1+2-3x) = 3e^{3x}(1-3x).$$

Pour tout réel $x : 3e^{3x} > 0$ donc le signe de f''(x) est celui de 1 - 3x.

$$1 - 3x \ge 0$$
 équivaut à $1 \ge 3x$ équivaut à $\frac{1}{3} \ge x$.

Sur
$$]-\infty$$
; $\frac{1}{3}], f''(x) \ge 0$ donc f est convexe sur $]-\infty$; $\frac{1}{3}]$.

Sur
$$\left[\frac{1}{3}, +\infty\right[, f''(x) \le 0 \text{ donc } f \text{ est concave } \left[\frac{1}{3}, +\infty\right[.$$

Le point d'abscisse $x = \frac{1}{3}$ est le seul point d'inflexion car f'' s'annule et change de signe en $\frac{1}{3}$.