SUJET D

1.
$$f'(x) = 0.5 \times 2x - 7 + 6 \times \frac{1}{x} = x - 7 + \frac{6}{x} = \frac{x^2 - 7x + 6}{x}$$
.

2. a. Sur [1; 9], x > 0. Le signe de f'(x) est celui de $x^2 - 7x + 6$.

On détermine les éventuelles racines du polynôme du second degré $x^2 - 7x + 6$.

Ce polynôme a pour discriminant $\Delta = (-7)^2 - 4 \times 1 \times 6 = 25$.

Ce polynôme a donc deux racines :
$$\frac{7 - \sqrt{25}}{2 \times 1} = \frac{7 - 5}{2} = 1$$
 et $\frac{7 + \sqrt{25}}{2 \times 1} = \frac{7 + 5}{2} = 6$.

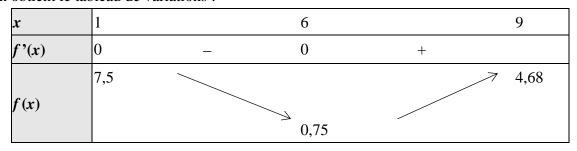
 $x^2 - 7x + 6$ est un polynôme du second degré dont le coefficient de x^2 est positif, ainsi, $x^2 - 7x + 6 > 0$ pour x appartenant à $]-\infty$; $1[\cup]6$; $+\infty[$.

$$f(1) = 0.5 \times 1^2 - 7 \times 1 + 14 + 6 \ln(1) = 7.5.$$

$$f(6) = 0.5 \times 6^2 - 7 \times 6 + 14 + 6 \ln (6) = 6 \ln (6) - 10 \approx 0.75.$$

$$f(9) = 0.5 \times 9^2 - 7 \times 9 + 14 + 6 \ln(9) = 12 \ln(3) - 8.5 \approx 4.68.$$

On obtient le tableau de variations :



b. Sur l'intervalle [6; 9], f(x) < 5, l'équation f(x) = 5 n'a donc pas de solution.

Sur l'intervalle [1; 6], f est continue et strictement décroissante,

$$5 \in [6 \ln (6) - 10; 7,5].$$

D'après le corollaire du théorème des valeurs intermédiaires, l'équation f(x) = 5 admet une unique solution α .

- **c.** À l'aide de la calculatrice, on obtient $f(2,55) \approx 5,018 > 5$ et $f(2,56) \approx 4,997 < 5$, soit $2,55 < \alpha < 2,56$.
- d. À la fin de l'exécution de l'algorithme, la variable X contient la valeur 2,56, première valeur au centième près pour laquelle $Y \le 5$.
- **3.** Le tableau de variation permet d'affirmer que le minimum de f est environ 0,75 pour x = 6, ce qui signifie que le coût moyen est minimum pour une production de 600 pneus et que ce coût moyen est d'environ 75 euros.