158 1. •
$$\lim_{\substack{x \to -2 \\ x < -2}} (x - 5) = -7 \text{ et } \lim_{\substack{x \to -2 \\ x < -2}} (x + 2) = 0^-. \text{ Ainsi } \lim_{\substack{x \to -2 \\ x < -2}} \left(\frac{x - 5}{x + 2} \right) = +\infty.$$

De plus,
$$\lim_{X\to+\infty} \ln(X) = +\infty$$
.

En utilisant la limite d'une fonction composée, on en déduit :

$$\lim_{\substack{x \to -2 \\ x < -2}} \ln \left(\frac{x-5}{x+2} \right) = +\infty.$$

• La droite d'équation x = -2 est asymptote verticale la courbe représentative de f.

•
$$\lim_{x \to +\infty} \frac{x-5}{x+2} = \lim_{x \to +\infty} \frac{1-\frac{5}{x}}{1+\frac{2}{x}} = 1$$
. De plus, $\lim_{X \to 1} \ln(X) = \ln(1) = 0$.

En utilisant la limite d'une fonction composée, on en déduit :

$$\lim_{x \to +\infty} \ln \left(\frac{x-5}{x+2} \right) = 0.$$

- La droite d'équation y = 0 est asymptote horizontale la courbe représentative de f.
- **2.** f est de la forme ln (u) avec $u(x) = \frac{x-5}{x+2}$.

La fonction u est dérivable et pour tout réel x de $]0; +\infty[$:

$$u'(x) = \frac{1 \times (x+2) - (x-5) \times 1}{(x+2)^2} = \frac{7}{(x+2)^2} .$$

Ainsi,
$$f'(x) = \frac{\frac{7}{(x+2)^2}}{\frac{x-5}{x+2}} = \frac{7}{(x+2)^2} \times \frac{x+2}{x-5} = \frac{7}{(x+2)(x-5)}$$
.

Pour x de]
$$-\infty$$
; $-2[$, $(x + 2) < 0$ et $(x - 5) < 0$ donc $\frac{7}{(x+2)(x-5)} > 0$ soit $f'(x) > 0$.

Ainsi, f est croissante sur $]-\infty$; -2[.