130 1. a. Pour tout réel x, on $a - 1 \le \cos(x) \le 1$.

Donc
$$0 \le \cos^2(x) \le 1$$
.

D'où
$$0 \le 2 \cos^2(x) \le 2$$
.

D'où
$$-1 \le 2 \cos^2(x) - 1 \le 1$$
.

D'où
$$x - 1 \le x + 2\cos^2(x) - 1 \le x + 1$$
.

Et ainsi
$$x - 1 \le f(x) \le x + 1$$
.

b. La limite de x - 1 en $+\infty$ est $+\infty$.

Donc, par théorème de comparaison, la limite de f(x) en $+\infty$ est $+\infty$.

La limite de x + 1 en $-\infty$ est $-\infty$.

Donc, par théorème de comparaison, la limite de f(x) en $-\infty$ est $-\infty$.

c. \mathscr{C} se situe entre les deux droites d'équations respectives y = x - 1 et y = x + 1.

2. • Les abscisses des points d'intersection de $\mathscr C$ et de d_1 sont les solutions de l'équation f(x) = x - 1.

$$f(x) = x - 1$$
 équivaut à $x + 2\cos^2(x) - 1 = x - 1$, ce qui équivaut à $2\cos^2(x) = 0$, ce qui équivaut à $\cos(x) = 0$, ce qui équivaut à $x = \frac{\pi}{2}$ ou $x = \frac{3\pi}{2}$.

De plus,
$$f(\frac{\pi}{2}) = \frac{\pi}{2} - 1$$
 et $f(\frac{3\pi}{2}) = \frac{3\pi}{2} - 1$.

Donc les points d'intersection de \mathscr{C} et de d_1 sont les points de coordonnées $(\frac{\pi}{2}; \frac{\pi}{2} - 1)$ et $(\frac{3\pi}{2}; \frac{3\pi}{2} - 1)$.

• Les abscisses des points d'intersection de $\mathscr C$ et de d_2 sont les solutions de l'équation f(x) = x + 1.

$$f(x) = x + 1$$
 équivaut à $x + 2\cos^2(x) - 1 = x + 1$, ce qui équivaut à $2\cos^2(x) = 2$, ce qui équivaut à $\cos^2(x) = 1$, ce qui équivaut à $\cos(x) = -1$ ou $\cos(x) = 1$, ce qui équivaut à $x = \pi$ ou $x = 0$ ou $x = 2\pi$.

De plus,
$$f(\pi) = \pi + 1$$
, $f(0) = 1$ et $f(2\pi) = 2\pi + 1$.

Donc les points d'intersection de $\mathcal C$ et de d_2 sont les points de coordonnées :

$$(0; 1), (\pi; \pi + 1), \text{ et } (2\pi; 2\pi + 1).$$