135 1. Soit x un réel de l'intervalle $I = [2; +\infty[$

$$\frac{a}{x-1} + \frac{b}{x-2} = \frac{a(x-2)}{(x-1)(x-2)} + \frac{b(x-1)}{(x-1)(x-2)} = \frac{ax-2a+bx-b}{(x-1)(x-2)} = \frac{(a+b)x-2a-b}{(x-1)(x-2)}.$$
Si les réels a et b vérifient les équations $a+b=3$ et $-2a-b=1$, alors on aura

$$f(x) = \frac{a}{x-1} + \frac{b}{x-2}$$
 pour tout réel x de I.

On résout donc le système d'équations :
$$\begin{cases} a+b=3 \\ -2a-b=1 \end{cases}$$
 Celui-ci équivaut à
$$\begin{cases} b=3-a \\ -2a-(3-a)=1 \end{cases}$$
 soit
$$\begin{cases} b=3-a \\ -a-3=1 \end{cases}$$
 soit
$$\begin{cases} b=3-a \\ a=-4 \end{cases}$$
 soit
$$\begin{cases} a+b=3 \\ -2a-b=1 \end{cases}$$

2. On a donc, pour tout réel x de I : $f(x) = \frac{-4}{x-1} + \frac{7}{x-2}$.

La fonction $x \mapsto \frac{1}{x-1}$ est de la forme $\frac{u'}{u}$ avec u(x) = x-1. Une primitive de $\frac{u'}{u}$ est la fonction $\frac{1}{u}$ donc une primitive sur I de la fonction $x \mapsto \frac{1}{x-1}$ est la fonction $x \mapsto \ln(x-1)$.

La fonction $x \mapsto \frac{1}{x-2}$ est de la forme $\frac{v'}{v}$ avec v(x) = x-1, donc une primitive sur I de la function $x \mapsto \frac{1}{x-2}$ est la function $x \mapsto \ln(x-2)$.

On en déduit une primitive de la fonction f sur I : $F(x) = -4\ln(x-1) + 7\ln(x-2)$.

Toutes les primitives de f sur I ont pour expression $x \mapsto -4\ln(x-1) + 7\ln(x-2) + C$, où C est un réel.

3. On cherche la primitive F_1 de f sur I telle que $F_1(3) = 0$.

Puisque $F_1(x) = -4\ln(x-1) + 7\ln(x-2) + C$, on a :

$$F_1(3) = -4\ln(3) + 7\ln(1) + C = -4\ln(3) + C.$$

D'où
$$-4\ln(3) + C = 0$$
, soit $C = 4\ln(3)$.

La primitive de f sur I qui s'annule en 3 est la fonction $x \mapsto -4\ln(x-1) + 7\ln(x-2) + 4\ln(3)$.