139 1. Pour tout réel x > 0, puisque $G(x) = \frac{g(x)}{x}$, alors $G'(x) = \frac{xg'(x) - g(x)}{x^2}$.

D'où, pour tout réel x > 0, $xg'(x) - g(x) = x^2 G(x)$, soit $g(x) - xg'(x) = -x^2 G(x)$, On a aussi, pour x > 0: $\frac{1}{x+2} - \frac{1}{x} = \frac{x}{x(x+2)} - \frac{x+2}{x(x+2)} = \frac{x-x-2}{x(x+2)} = \frac{-2}{x(x+2)}$. Ainsi, g possède la propriété P si et seulement si, pour tout réel x de]0; $+\infty[$:

$$-x^2 G(x) = \frac{2x}{x+2}$$
, soit $G(x) = \frac{2x}{-x^2(x+2)}$, soit $G(x) = \frac{-2}{x(x+2)}$, ce qui équivaut à $G(x) = \frac{1}{x+2} - \frac{1}{x}$.

2. Une primitive de la fonction $x \mapsto \frac{1}{x+2} \text{ sur }]0 ; +\infty[$ est la fonction $x \mapsto \ln(x+2)$.

Une primitive de la fonction $x \mapsto \frac{1}{x} \operatorname{sur} [0] : +\infty[$ est la fonction $x \mapsto \ln(x)$.

Ainsi, pour tout réel x > 0, $G(x) = \ln(x+2) - \ln(x) + k$, où k est un réel.

Puisque $G(x) = \frac{g(x)}{x}$, on a g(x) = xG(x).

Donc (E) est l'ensemble des fonctions définies sur]0; $+\infty[$ telles que $x \mapsto xG(x)$, c'est-à-dire $x \mapsto x \ln(x+2) - x \ln(x) + kx$, où k est un réel.