102 La fonction F est dérivable sur]0; $+\infty[$ comme somme de deux fonctions dérivables : la fonction G définie par $G(x) = 6x\ln(x)$ et la fonction K définie par $K(x) = -x^2$.

La fonction G est de la forme uv avec u(x) = 6x et

$$v(x) = \ln(x) \text{ donc } G'(x) = 6\ln(x) + 6x \times \frac{1}{x} = 6\ln(x) + 6.$$

Donc
$$F'(x) = G'(x) + K'(x) = 6\ln(x) + 6 - 2x$$
.

En factorisant par 2, on obtient : $F'(x) = 2(3\ln(x) + 3 - x)$

On a donc, pour tout réel x, F'(x) = f(x) donc F est une primitive de f sur]0; $+\infty[$.

L'affirmation donnée est donc vraie, F est une primitive de la fonction f.