85 La fonction g est de la forme e^u , où u est la fonction définie sur \mathbb{R} par $u(x) = -x^2$. Ainsi g est dérivable sur \mathbb{R} et pour tout réel x,

$$u'(x) = -2x$$
 et $g'(x) = u'(x)e^{u(x)} = -2xe^{-x^2}$.

Par conséquent, pour tout réel x,

$$g'(x) + 2xg(x) = -2xe^{-x^2} + 2xe^{-x^2} = 0.$$

 $g'(x) + 2xg(x) = -2xe^{-x^2} + 2xe^{-x^2} = 0.$ Puisque, pour tout réel x, g'(x) + 2xg(x) = 0, on en déduit que la fonction g est une solution de cette équation différentielle sur R.