90 1. -3y' - 2y = 0 équivaut à -3y' = 2y, ce qui est équivalent à $y' = -\frac{2}{3}y$.

On reconnaît une équation différentielle du premier ordre de la forme y' = ay, avec $a = -\frac{2}{3}$.

Les solutions de l'équation différentielle y' = ay (avec a réel donné) sont les fonctions définies sur \mathbb{R} par $x \mapsto Ce^{ax}$, où C est une constante réelle quelconque.

Donc les solutions de cette équation différentielle sont les fonctions y définies sur \mathbb{R} par $v(x) = Ce^{-\frac{2}{3}x}$, où $C \in \mathbb{R}$.

2. $\frac{4}{5}y' + y = 0$ équivaut à $\frac{4}{5}y' = -y$, ce qui est équivalent à $y' = -\frac{5}{4}y$.

On reconnaît une équation différentielle du premier ordre de la forme y' = ay, avec $a = -\frac{5}{4}$, soit a = -1,25.

Les solutions de l'équation différentielle y' = ay (avec a réel donné) sont les fonctions définies sur \mathbb{R} par $x \mapsto Ce^{ax}$, où C est une constante réelle quelconque.

Donc les solutions de cette équation différentielle sont les fonctions y définies sur \mathbb{R} par $y(x) = Ce^{-1,25}$, où $C \in \mathbb{R}$.