92 1. Les solutions de l'équation différentielle y' = ay (avec a réel donné) sont les fonctions définies sur \mathbb{R} par $x \mapsto Ce^{ax}$, où C est une constante réelle quelconque. Donc, pour tout $t \ge 0$, $Q(t) = Ce^{at}$, où $C \in \mathbb{R}$.

On détermine la constante réelle C en utilisant la condition initiale :

$$Q(0) = 1.8$$
 équivaut à $Ce^{a \times 0} = 1.8$, soit $C = 1.8$.

Par conséquent, $Q(t) = 1.8e^{at}$ pour tout réel t positif ou nul.

- 2. On sait que la quantité de substance initialement présente dans le sang est Q(0) = 1.8 mg. On applique une diminution de 30 %: $1.8 \times \left(1 \frac{30}{100}\right) = 1.8 \times 0.7 = 1.26$. Donc la quantité de substance présente dans le sang au bout d'une heure est Q(1) = 1.26 mg. Or Q(1) = 1.26 équivaut à $1.8e^{a \times 1} = 1.26$, ce qui est équivalent à $e^a = \frac{1.26}{1.8} = 0.7$, soit $a = \ln(0.7)$. Donc pour tout $t \ge 0$, $Q(t) = 1.8e^{\ln(0.7)t} = 1.8 \times 0.7^t$.
- 3. On cherche le temps t, en heures, à partir duquel la quantité de substance présente dans le sang Q(t) devient inférieure à 0,15 mg. On résout donc sur $[0; +\infty[1]$ inéquation :

$$Q(t) < 0.15$$
, soit $1.8 \times 0.7^t < 0.15$, soit $0.7^t < \frac{0.15}{1.8}$, soit $t \times \ln(0.7) < \ln(\frac{0.15}{1.8})$,

soit $t > \frac{\ln(\frac{0.15}{1.8})}{\ln(0.7)}$ (l'ordre est modifié puisqu'on divise par $\ln(0.7) < 0$).

Avec une calculatrice, $\frac{\ln\left(\frac{0,15}{1,8}\right)}{\ln(0,7)} \approx 6,97$. On en déduit donc que la quantité de substance présente dans le sang deviendra inférieure à 0,15 mg au bout de 7 heures.