$$94 \cdot 1. \ y' = 7y + 5.$$

On reconnaît une équation différentielle du premier ordre de la forme y' = ay + b, avec a = 7 et b = 5.

Les solutions de l'équation différentielle y' = ay + b (avec a et b deux réels donnés, a non nul) sont les fonctions définies sur \mathbb{R} par $x \mapsto Ce^{ax} - \frac{b}{a}$, où C est une constante réelle quelconque.

Donc les solutions de cette équation différentielle sont les fonctions y définies sur \mathbb{R} par $y(x) = Ce^{7x} - \frac{5}{7}$, où $C \in \mathbb{R}$.

2.
$$y' + 2y + 4 = 0$$
 équivaut à $y' = -2y - 4$.

On reconnaît une équation différentielle du premier ordre de la forme y' = ay + b, avec a = -2 et b = -4.

Les solutions de l'équation différentielle y' = ay + b (avec a et b deux réels donnés, a non nul) sont les fonctions définies sur \mathbb{R} par $x \mapsto C e^{ax} - \frac{b}{a}$, où C est une constante réelle quelconque.

Donc les solutions de cette équation différentielle sont les fonctions y définies sur \mathbb{R} par $y(x) = Ce^{-2x} - \frac{-4}{-2} = Ce^{-2x} - 2$, où $C \in \mathbb{R}$.