95 1. 3y' + y = 1 équivaut à 3y' = -y + 1, ce qui équivalent à $y' = -\frac{1}{3}y + \frac{1}{3}$. On reconnaît une équation différentielle du premier ordre de la forme y' = ay + b, avec $a = -\frac{1}{3}$ et $b = \frac{1}{3}$.

Les solutions de l'équation différentielle y' = ay + b (avec a et b deux réels donnés, a non nul) sont les fonctions définies sur \mathbb{R} par $x \mapsto Ce^{ax} - \frac{b}{a}$, où C est une constante réelle quelconque.

Donc les solutions de cette équation différentielle sont les fonctions y définies sur \mathbb{R} par $y(x) = Ce^{-\frac{1}{3}x} - \frac{\frac{1}{3}}{-\frac{1}{3}} = Ce^{-\frac{x}{3}} + 1$, où $C \in \mathbb{R}$.

2.
$$-0.5y' - 1.75y = 1.4$$
 équivaut à $-0.5y' = 1.75y + 1.4$, ce qui équivalent à $y' = -3.5y - 2.8$.

On reconnaît une équation différentielle du premier ordre de la forme y' = ay + b, avec a = -3.5 et b = -2.8.

Les solutions de l'équation différentielle y' = ay + b (avec a et b deux réels donnés, a non nul) sont les fonctions définies sur \mathbb{R} par $x \mapsto Ce^{ax} - \frac{b}{a}$, où C est une constante réelle quelconque.

Donc les solutions de cette équation différentielle sont les fonctions y définies sur \mathbb{R} par $y(x) = Ce^{-3,5x} - \frac{-2,8}{-3,5} = Ce^{-3,5x} - 0,8$, où $C \in \mathbb{R}$.