Sujet C

- 1. Tous les graphiques ont en commun la parabole (courbe bleue) représentant la fonction f, qui est une fonction polynôme du second degré. La fonction F étant une primitive de f sur \mathbb{R} , c'est une fonction polynôme du troisième degré. La courbe représentative de F ne peut donc pas être une droite. On peut donc éliminer la réponse \mathbf{a} . De plus, dans les graphiques des réponses \mathbf{c} et \mathbf{d} , la courbe verte semble strictement « montante » sur]3; 4] alors que la fonction f est strictement négative sur cet intervalle. La courbe verte ne peut donc pas être celle de F, qui est strictement décroissante sur]3; 4]. On peut donc éliminer les réponses \mathbf{c} et \mathbf{d} . Donc la bonne réponse est \mathbf{b} .
- **2.** Une primitive sur \mathbb{R} de la fonction $x \mapsto -3x^2$ est $x \mapsto -x^3$. Donc la seule bonne réponse possible est la **b**. (Il suffit ensuite de dériver la fonction dont l'expression est proposée pour confirmer que **b** est effectivement une bonne réponse.)
- 3. La fonction f étant dérivable sur \mathbb{R} , la fonction $\cos(f)$ est dérivable sur \mathbb{R} et, pour tout réel x, $\frac{d\cos(f)}{dx}(x) = (\cos(f))'(x) = -f'(x)\sin(f(x))$. La bonne réponse est \mathbf{c} .
- **4.** La fonction g est de la forme f'f, donc une primitive de g sur \mathbb{R} est $\frac{1}{2}f^2$. La bonne réponse est $\frac{1}{2}$.
- **5.** La fonction h est de la forme $\cos f'(\sin)$, donc une primitive de cette fonction sur \mathbb{R} est $f(\sin x)$. La bonne réponse est \mathbf{d} .