- **152** a. Pour tous réels x et y, $e^x e^y = e^{x+y}$, donc $e^3 \times e^5 = e^{3+5} = e^8 \neq e^{15}$: la proposition est fausse.
- **b.** Pour tous réels x et y, $e^x e^y = e^{x+y}$, donc $e^3 \times e^5 = e^{3+5} = e^8$: la proposition est vraie.
- c. Pour tous réels x et y, $e^x e^y = e^{x+y}$ et $e^{-x} = \frac{1}{e^x}$, donc $e^2 \times e^{-7} = e^{2+(-7)} = e^{-5} = \frac{1}{e^5}$: la proposition est vraie.
- **d.** Pour tous réels x et y, $\frac{e^x}{e^y} = e^{x-y}$, donc $\frac{e^{-3}}{e^{-5}} = e^{-3-(-5)} = e^{-3+5} = e^2 \neq e^{-8}$: la proposition est fausse.
- e. Pour tous réels x et y, $\frac{e^x}{e^y} = e^{x-y}$, donc $\frac{e^{-1}}{e^2} = e^{-1-2} = e^{-3} \neq e$: la proposition est fausse.
- **f.** Pour tout réel x et pour n entier relatif, $(e^x)^n = e^{nx}$, donc : $(e^{-2})^7 = e^{-2 \times 7} = e^{-14} \neq e^5$: la proposition est fausse.
- **g.** Pour tout réel x et pour n entier relatif, $(e^x)^n = e^{nx}$ et $e^{-x} = \frac{1}{e^x}$, donc : $(e^{0,1})^{10} = e^{0,1 \times 10} = e^1 = \frac{1}{e^{-1}}$: la proposition est vraie.
- **h.** Pour tout réel x et pour n entier relatif, $(e^x)^n = e^{nx}$, donc : $e \times (e^{-1})^4 = e^1 \times e^{-1 \times 4} = e^1 \times e^{-4}$. Pour tous réels x et y, $e^x e^y = e^{x+y}$, donc $e^1 \times e^{-4} = e^{1-4} = e^{-3} \neq e^{-4}$: la proposition est fausse.