- **161** Pour tout nombre réel t de l'intervalle $[0; +\infty[, f(t) = 30 10e^{-0.1t}]$.
- **1. a.** Pour déterminer la température du lubrifiant à l'arrêt, on calcule f(0).

 $f(0) = 30 - 10e^0 = 30 - 10 \times 1 = 20$. Donc la température du lubrifiant à l'arrêt est de 20 °C.

- **b.** Pour déterminer la température du lubrifiant au bout de vingt-quatre heures, on calcule f(24). $f(24) = 30 10e^{-2.4} \approx 29$. Donc la température du lubrifiant au bout de 24 heures est d'environ 29 °C.
- **2. a.** La fonction e^u est dérivable sur \mathbb{R} et sa dérivée est la fonction $u'e^u$.

On pose pour tout nombre $t \ge 0$, $g(t) = -10e^{-0.1t} = -10e^{u(t)}$

avec u(t) = -0.1t, on a u'(t) = -0.1 et $g'(t) = -10 \times (-0.1) \times e^{-0.1t} = e^{-0.1t}$.

Ainsi pour tout $t \ge 0$, $f'(t) = 0 + g'(t) = e^{-0.1t}$.

- **b.** Pour tout $t \ge 0$, $e^{-0.1t} > 0$ donc, pour tout $t \ge 0$, f'(t) > 0, et donc f est strictement croissante sur $[0; +\infty[$.
- 3. La température moyenne du lubrifiant entre la cinquième et la dixième heure de fonctionnement se calcule par la formule $\frac{1}{10-5} \int_5^{10} f(t) dt = \frac{1}{5} \int_5^{10} f(t) dt$.

Déterminons une primitive F de f sur $[0; +\infty[$.

Pour tout réel $t \ge 0$, $f(t) = 30 - 10e^{-0.1t} = 30 - 100 \times 0.1 \times e^{-0.1t}$. Or une primitive de u'e u est e^u , donc une primitive de $-0.1 \times e^{-0.1t}$ est $e^{-0.1t}$.

Une primitive F de f sur $[0; +\infty[$ est donnée par $F(t) = 30t + 100e^{-0.1t}$.

 $\frac{1}{5}\int_{5}^{10} f(t) dt = \frac{1}{5} (F(10) - F(5)) \approx 25$: la température moyenne du lubrifiant entre la cinquième et la dixième heure de fonctionnement est environ de 25 °C.